8 октября, 2021 Автор: Соня Крапива

Линейные неравенства с одной переменной

Линейные неравенства, примеры, решения

После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.

Что такое линейное неравенство?

В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.

Линейное неравенство с одной переменной x – это неравенство вида a · x + b > 0 , когда вместо > используется любой знак неравенства < , ≤ , ≥ , а и b являются действительными числами, где a ≠ 0 .

Неравенства a · x < c или a · x > c , с x являющимся переменной, а a и c некоторыми числами, называют линейными неравенствами с одной переменной.

Так как ничего не сказано за то, может ли коэффициент быть равным 0 , тогда строгое неравенство вида 0 · x > c и 0 · x < c может быть записано в виде нестрогого, а именно, a · x ≤ c , a · x ≥ c . Такое уравнение считается линейным.

Их различия заключаются в:

  • форме записи a · x + b > 0 в первом, и a · x > c – во втором;
  • допустимости равенства нулю коэффициента a , a ≠ 0 — в первом, и a = 0 — во втором.

Считается, что неравенства a · x + b > 0 и a · x > c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0 · x + 5 > 0 приведет к тому, что его необходимо будет решить, причем случай а = 0 не подойдет.

Считается, что линейными неравенствами в одной переменной x считаются неравенства вида a · x + b < 0 , a · x + b > 0 , a · x + b ≤ 0 и a · x + b ≥ 0 , где a и b являются действительными числами. Вместо x может быть обычное число.

Исходя из правила, имеем, что 4 · x − 1 > 0 , 0 · z + 2 , 3 ≤ 0 , — 2 3 · x — 2 < 0 являются примерами линейных неравенств. А неравенства такого плана, как 5 · x > 7 , − 0 , 5 · y ≤ − 1 , 2 называют сводящимися к линейному.

Как решить линейное неравенство

Основным способом решения таких неравенств сводится к равносильным преобразованиям для того, чтобы найти элементарные неравенства x < p ( ≤ , > , ≥ ) , p являющееся некоторым числом, при a ≠ 0 , а вида a < p ( ≤ , > , ≥ ) при а = 0 .

Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.

Используя равносильные преобразования

Чтобы решить линейное неравенство вида a · x + b < 0 ( ≤ , > , ≥ ) , необходимо применить равносильные преобразования неравенства. Коэффициент может быть равен или не равен нулю. Рассмотрим оба случая. Для выяснения необходимо придерживаться схемы, состоящей из 3 пунктов: суть процесса, алгоритм, само решение.

Алгоритм решение линейного неравенства a · x + b < 0 ( ≤ , > , ≥ ) при a ≠ 0

  • число b будет перенесено в правую часть неравенства с противоположным знаком, что позволит прийти к равносильному a · x < − b ( ≤ , > , ≥ ) ;
  • будет производиться деление обеих частей неравенства на число не равное 0 . Причем , когда a является положительным, то знак остается, когда a – отрицательное, меняется на противоположный.

Рассмотрим применение данного алгоритма на решении примеров.

Решить неравенство вида 3 · x + 12 ≤ 0 .

Данное линейное неравенство имеет a = 3 и b = 12 . Значит, коэффициент a при x не равен нулю. Применим выше сказанные алгоритмы, решим.

Необходимо перенести слагаемое 12 в другую часть неравенства с изменением знака перед ним. Тогда получаем неравенство вида 3 · x ≤ − 12 . Необходимо произвести деление обеих частей на 3 . Знак не поменяется, так как 3 является положительным числом. Получаем, что ( 3 · x ) : 3 ≤ ( − 12 ) : 3 , что даст результат x ≤ − 4 .

Неравенство вида x ≤ − 4 является равносильным. То есть решение для 3 · x + 12 ≤ 0 – это любое действительное число, которое меньше или равно 4 . Ответ записывается в виде неравенства x ≤ − 4 , или числового промежутка вида ( − ∞ , − 4 ] .

Весь выше прописанный алгоритм записывается так:

3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .

Ответ: x ≤ − 4 или ( − ∞ , − 4 ] .

Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .

Из условия видим, что коэффициент a при z равняется — 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.

Производим деление обеих частей уравнения на число — 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что ( − 2 , 7 · z ) : ( − 2 , 7 ) < 0 : ( − 2 , 7 ) , и дальше z < 0 .

Весь алгоритм запишем в краткой форме:

− 2 , 7 · z > 0 ; z < 0 .

Ответ: z < 0 или ( − ∞ , 0 ) .

Решить неравенство — 5 · x — 15 22 ≤ 0 .

По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется — 5 , с коэффициентом b , которому соответствует дробь — 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести — 15 22 в другую часть с противоположным знаком, разделить обе части на — 5 , изменить знак неравенства:

— 5 · x ≤ 15 22 ; — 5 · x : — 5 ≥ 15 22 : — 5 x ≥ — 3 22

При последнем переходе для правой части используется правило деления числе с разными знаками 15 22 : — 5 = — 15 22 : 5 , после чего выполняем деление обыкновенной дроби на натурально число — 15 22 : 5 = — 15 22 · 1 5 = — 15 · 1 22 · 5 = — 3 22 .

Ответ: x ≥ — 3 22 и [ — 3 22 + ∞ ) .

Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b < 0 является неравенством 0 · x + b < 0 , где на рассмотрение берется неравенство вида b < 0 , после чего выясняется, оно верное или нет.

Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b < 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b < 0 , где b < 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b < 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.

Или:  Как выбирать обои Обои для рабочего стола

Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b < 0 ( ≤ , > , ≥ ) :

Числовое неравенство вида b < 0 ( ≤ , > , ≥ ) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.

Решить неравенство 0 · x + 7 > 0 .

Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.

Ответ: промежуток ( − ∞ , + ∞ ) .

Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .

При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.

Ответ: решений нет.

Рассмотрим решение линейных неравенств , где оба коэффициента равняется нулю.

Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .

При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.

Ответ: неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Методом интервалов

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.

Метод интервалов – это:

  • введение функции y = a · x + b ;
  • поиск нулей для разбивания области определения на промежутки;
  • определение знаков для понятия их на промежутках.

Соберем алгоритм для решения линейных уравнений a · x + b < 0 ( ≤ , > , ≥ ) при a ≠ 0 с помощью метода интервалов:

  • нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
  • построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
  • определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
  • решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, < или ≤ над отрицательным промежутком.

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Решить неравенство − 3 · x + 12 > 0 .

Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.

Нужно определить знаки на промежутках. Чтобы определить его на промежутке ( − ∞ , 4 ) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.

Определяем знак из промежутка ( 4 , + ∞ ) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 < 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.

Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.

Из чертежа видно, что искомое решение имеет вид ( − ∞ , 4 ) или x < 4 .

Ответ: ( − ∞ , 4 ) или x < 4 .

Графическим способом

Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 < 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x < 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.

  • решением неравенства 0 , 5 · x − 1 < 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х ;
  • решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
  • решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х ;
  • решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.

Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х .

Алгоритм решения линейных неравенств графическим способом.

Построение графика функции y = a · x + b производится:

  • во время решения неравенства a · x + b < 0 определяется промежуток, где график изображен ниже О х ;
  • во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
  • во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х ;
  • во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.

Решить неравенство — 5 · x — 3 > 0 при помощи графика.

Необходимо построить график линейной функции — 5 · x — 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х — 5 · x — 3 > 0 получим значение — 3 5 . Изобразим графически.

Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х . Выделим красным цветом необходимую часть плоскости и получим, что

Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч — ∞ , — 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки — 3 5 также являлось бы решением неравенства. И совпадало бы с О х .

Ответ: — ∞ , — 3 5 или x < — 3 5 .

Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.

Определить из неравенств 0 · x + 7 < = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.

Или:  Нотариальный договор в каких случаях не обойтись без помощи нотариуса

Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х . Значит, 0 · x + 7 < = 0 решений не имеет, потому как нет промежутков.

График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х . Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.

Ответ: второе неравенство имеет решение при любом значении x .

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · ( x − 1 ) + 3 ≤ 4 · x − 2 + x , x — 3 5 — 2 · x + 1 > 2 7 · x .

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · ( x − 1 ) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

  • раскрыть скобки;
  • слева собрать переменные, а справа числа;
  • привести подобные слагаемые;
  • разделить обе части на коэффициент при x .

Решить неравенство 5 · ( x + 3 ) + x ≤ 6 · ( x − 3 ) + 1 .

Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.

Ответ: нет решений.

Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1 является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.

Источник



Линейные неравенства с одной переменной

Выражение с одной переменной, содержащее знак неравенства, называется неравенством с одной переменной. Например:

23х+11<11x+5; 6x–10; х>9

Неравенства такого вида называют линейными неравенствами с одной переменной, так как х в них в первой степени.

Вспомним, что в зависимости от знака неравенства, их называют строгие знаки (< и >) или нестрогие знаки (≤ и ≥).

Решением неравенства с одной переменной является значение переменной, при котором данное неравенство обращается в верное числовое неравенство.

Решить неравенство – это значит найти все его решения или доказать, что решений нет.

При решении неравенства с одной переменной пользуются следующими свойствами.

  1. Если из одной части неравенства перенести слагаемое в другую часть, поменяв при этом знак слагаемого на противоположный, то получится равносильное ему неравенство;
  2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное ему неравенство;
  3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится равносильное ему неравенство.

Рассмотрим решение линейных неравенств с одной переменной на примерах.

Пример №1. Решить неравенство:

Перенесем слагаемые из одной части в другую, изменяя знаки у слагаемых, которые будем переносить, на противоположные:

Теперь приведем подобные слагаемые в каждой части неравенства: 5х<10. Дальше разделим обе части неравенства на число 5 (коэффициент при х), получим: х<2. Множество решений данного неравенства состоит из всех чисел, которые меньше минус двух. Ответ можно записать в виде неравенства х<2, либо в виде числового промежутка (–∞;-2). Вспомним, что около знака «бесконечность» всегда ставится круглая скобка, а так как неравенство строгое (знак «меньше»), то и у числа два также ставится «круглая» скобка). Это множество чисел можно показать на числовом луче (точка, которая показывает число 2, будет «выколотая», так как неравенство строгое):

Пример №2. Решить неравенство:

Выполним перенос слагаемых:

Приведем подобные слагаемые: –3х–18. Разделим обе части неравенства на минус три и изменим знак неравенства на противоположный: х≥6. Значит, множество решений данного неравенства – это все числа, которые больше или равны 6. Ответ можно записать, как в виде нестрогого (знак «больше или равно») неравенства х≥6, так и в виде числового промежутка [6;+), (видим около числа 6 «квадратную» скобку), показав его на числовом луче, где точка, обозначающая число 6, закрашена, ее называют «приколотой» точкой, так как неравенство нестрогое.

В рассмотренных примерах мы получали неравенства, у которых коэффициент при переменной не равен нулю. Но есть случаи, когда получается неравенство вида 0•х>a или 0•х<a (возможны и нестрогие знаки). В этом случае неравенство либо не имеет решений, либо решением является любое число.

Пример №3. Решить неравенство:

Выполняя перенос слагаемых и приведение подобных, получим неравенство:

Данное неравенство при любом значении х будет иметь вид 0<–41, что является неверным. Значит, оно не имеет решений, следовательно, и данное по условию неравенство не имеет решений.

Пример №4. Решить неравенство:

Выполним все необходимые действия, получим:

Данное неравенство при любом значении х будет иметь вид 0>–10, а это верное неравенство, значит х – любое число. Следовательно, ответ в данном неравенстве – «х – любое число».

Или:  Оригинальность промышленного образца как условие патентоспособности

Источник

wiki.eduVdom.com

Математика:

Контакты

Содержание

Неравенства с одной переменной и их системы

Общий способ сравнения чисел

Число а больше числа b (а>b), если их разность (а — b) — положительное число; число а меньше числа b, если их разность (а — b) — отрицательное число.

Свойства числовых неравенств:

Решение неравенства с одной переменной — это значение переменной, при котором неравенство обращается в верное числовое неравенство.

Решить неравенство с одной переменной означает найти все его решения или доказать, что решений нет.

Решение системы неравенств с одной переменной — это значение переменной, при котором верно каждое из неравенств системы.

Решить систему означает найти все ее решения или доказать, что решений нет.

Решения неравенств с одной переменной метод интервалов

Если неравенство имеет вид $f(x) = (x — x_1)(x — x_2) \cdot \dots \cdot (x — x_n)>0 (<0)$ , то в каждом из промежутков, на которые область определения разбивается точками $x_1 x_2, \ldots, x_n$, знак функции сохраняется, а при переходе через каждую из точек $x_1, x_2, \ldots, x_n$ ее знак меняется.

Пример 1. Решите неравенства:
1.a) $\frac<4x-1> <2>— x > 3х + 2$
1.b) $\frac<4x-1> <2>— x \geq 3х + 2$..

Решение:

1.a 1.b
$\frac<4x-1> <2>— x > 3х + 2$. $\frac<4x-1> <2>— x \geq 3х + 2$.
$$ \frac<4x-1> <2>— x > 3х + 2 \\ \frac<4x-1-2x> <2>> 3х + 2 \,\,\,\,|\cdot 2 \\ 2x-1 > 6x+4 \\ 2x-6x > 4+1 \\ -4x > 5 \,\,\,\,|:(-4) \\ -4 < 0 \\ 4x < -5 \,\,\,\,|:4 \\ x < -\frac<5> <4>\\ \text <или>\\ (-\infty;\;-\frac<5><4>) $$ $$ \frac<4x-1> <2>— x \geq 3х + 2 \\ \frac<4x-1-2x> <2>\geq 3х + 2 \,\,\,\,|\cdot 2 \\ 2x-1 \geq 6x+4 \\ 2x-6x \geq 4+1 \\ -4x \geq 5 \,\,\,\,|:(-4) \\ -4 < 0 \\ 4x \leq -5 \,\,\,\,|:4 \\ x \leq- \frac<5> <4>\\ \text <или>\\ (-\infty;\;-\frac<5><4>] $$

Пример 2. Решите систему неравенств $$ \left\ <\begin(2x-3)-3(x-1)\geq 1 \\ 2(x+5)-x\leq 3 \end\right. $$

Решение: $$ \left\ <\begin(2x-3)-3(x-1)\geq 1 \\ 2(x+5)-x\leq 3 \end\right. \Leftrightarrow \left\ <\beginx\geq -1 \\ x\leq -7 \end\right. \text < - нет решений.>$$ Нельзя одновременно быть меньше -7 и больше -1.

Ответ: нет решений.

Пример 3. Решите неравенство $3x^2 — x — \frac<5> <4>\geq 0$.

Решение: Разложим квадратный трехчлен $3x^2 — x — \frac<5><4>$ на множители.

Для этого найдем его корни: $D = 1 + 4• 3• \frac<5> <4>= 16$;

$$ x = \frac<1\pm 4><6>; \\ x_1 = -\frac<1> <2>\\ x_2 = \frac<5> <6>\\ \\ 3x^2 — x — \frac<5> <4>= 3(x+\frac<1><2>)(x-\frac<5><6>) \\ 3x^2 — x — \frac<5> <4>\geq 0 \\ 3(x+\frac<1><2>)(x-\frac<5><6>)\geq 0 $$

Метод интервалов

Пример 4. Решите неравенство $\frac\geq 0$.

Решение: $$ \frac\geq 0 \\ \\ \frac<(x-2)(x+2)>\geq 0 $$ Находим, что смена знака происходит, при $x = 0, \pm 1, \pm 2$. При этом помним, что $x \neq \pm 2$, поскольку тогда знаменатель обратиться в ноль, а делить на ноль нельзя.

Метод интервалов

Пример 5. Под каким номером на каком рисунке верно указано решение системы неравенств? $$ \left\ <\begin5x+13 \leq 0 \\ x+5 \geq 1 \end\right. $$

Видео-решение:

Инструменты страницы

На главную страницу Обучение Wikipedia Тестирование Контакты Нашли ошибку? Справка

Записаться на занятия

ОшибкаЗаписаться на занятия к репетитору

Источник

Решение неравенств с одной переменной

Решением неравенства с одной переменной называют такое множество всех значений этой переменной, при подстановке которых в это неравенство вместо неизвестного получается верное числовое неравенство.

При решении неравенств используются свойства неравенств (см. §36 этого справочника), из которых следует:

  • если перенести какое-либо слагаемое неравенства в другую часть, знак неравенства не изменится;
  • если разделить обе части неравенства на одно и то же положительное число, знак не изменится; при делении на одно и то же отрицательное число знак нужно поменять.

Например: Решить неравенство $5x-12 \gt 3x+4$

Переносим 12 вправо со знаком +

Переносим 3x влево со знаком —

Делим на 2 обе части неравенства

Получаем ответ: $x \gt 8 или x \in (8;+\infty)$

Ответом является бесконечное множество решений – все действительные числа больше 8. Эти решения образуют открытый луч (см. §16 данного справочника)

Изображение множества решений неравенства с одной переменной на числовой прямой

Подробно о числовой прямой и видах числовых промежутков на ней рассказано в §16 данного справочника. Здесь мы изобразим числовые промежутки как решения неравенств на более простых примерах.

$3 \le x \le 5 или x \in [3;5]$

$3 \lt x \lt 5 или x \in (3;5)$

Полуинтервал

$3 \lt x \le 5 или x \in (3;5]$

$3 \le x \lt 5 или x \in [3;5)$

$x \ge 3 или x \in [3, +\infty)$

$x \le 5 или x \in (-\infty,5]$

Открытый луч

$x \gt 3 или x \in (3,+\infty)$

$x \lt 5 или x \in (-\infty,5)$

Примеры

Пример 1. Решите неравенство, изобразите множество его решений на числовой прямой, укажите вид полученного числового промежутка:

$x \le 12 или x \in (-\infty;12]$ – луч

Пример 1 а)

$x \gt 6 или x \in (6;+ \infty)$ — открытый луч

Пример 1 б)

$в) \frac <2>— \frac <5>\le 1 | \times 10$

$x \le 2 или x \in (-\infty;2]$ – луч

Пример 1 в)

$x \ge 4 или x \in [4;+ \infty)$- луч

Пример 1 г)

Пример 2. Длина стороны прямоугольника 7 см. Какой должна быть длина другой стороны, чтобы периметр прямоугольника был меньше периметра квадрата со стороной 5 см?

Пусть x неизвестная сторона прямоугольника.

Периметр прямоугольника: $P_ = 2(7+x)$

Периметр квадрата: $P_ = 4 \cdot 5 = 20$

Т.к. речь идёт о стороне прямоугольника, которая не может быть равной 0 или отрицательной, получаем: $0 \lt x \lt 3$ (см)

Ответ: $0 \lt x \lt 3$ см

Пример 3. Турист отправился на моторной лодке по течению реки и должен вернуться обратно не позже, чем через 5 часов. На какое расстояние может отъехать турист, если скорость течения 3 км/ч, а скорость лодки в стоячей воде 15 км/ч.

Источник