7 апреля, 2022 Автор: Соня Крапива

Деформация Способы деформирования

Деформации при изгибе

Деформация балки при изгибе проявляется в искривлении ее продольной оси.

Рассмотрим это на примере простой консольной балки, нагруженной изгибающим моментом m.

Мысленно вырежем из балки фрагмент длиной dz.

на котором отметим нейтральный слой и отрезок ab соединяющий сечения I-II и равноудаленный от нейтрального слоя на расстояние y.
От действия изгибающего момента данный фрагмент изогнется вместе с балкой

Кривизна рассматриваемого фрагмента балки определяется как

где
ρ – радиус кривизны изогнутой оси балки в данном сечении;
Mx — изгибающий момент в сечении;
E – модуль Юнга материала балки;
Ix — осевой момент инерции поперечного сечения.

Вследствие деформации, поперечные сечения балки, на всех участках, где есть изгибающий момент, повернутся относительно нейтральной оси (линии) на некоторый угол.

Из-за этого, все слои балки кроме нейтрального будут растягиваться или сжиматься.
В данном примере верхние слои балки сжаты, нижние – растянуты.

Относительное удлинение отрезка (слоя) ab

В общем случае нагружения искривление продольной оси упругой линии балки описывается дифференциальным уравнением следующего вида

непосредственное интегрирование которого позволяет рассчитывать угловые и линейные перемещения сечений балки при изгибе.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Источник

ПроСопромат.ру

Технический портал, посвященный Сопромату и истории его создания

Понятие о деформации изгиба

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Qу и изгибающий момент Мх; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым.

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений, а момент Мсумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

2014-09-14 19-12-34 Скриншот экрана

которая используется при построении и проверке эпюр Q и M.

2014-09-14 19-26-54 Скриншот экрана

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения, определяемые по формуле :

2014-09-14 19-25-23 Скриншот экрана

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону. На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

2014-09-14 19-49-52 Скриншот экрана

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

2014-09-14 20-00-57 Скриншот экрана

Для любой точки сечения,назовем ее точкой К, условие прочности балки по нормальным напряжениям имеет вид:

2014-09-14 19-59-05 Скриншот экрана, где н.о. — это нейтральная ось

2014-09-14 20-02-32 Скриншот экрана

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

2014-09-14 20-05-24 Скриншот экрана Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие .

Или:  Элекстросхемы проводки и оборудования для ВАЗ 2106

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные, так и касательные напряжения.

В случае изгиба, когда присутствует поперечная сила, сечения не будут плоскими. Они будут искривляться. Но опытные данные показывают, что искривления небольшие, поэтому применяют формулу чистого изгиба для определения нормальных напряжений.

Для определения касательных напряжений используется выражение, называемое в отечественной литературе формулой Д.И.Журавского:2014-09-14 20-10-48 Скриншот экрана, где2014-09-14 20-11-44 Скриншот экрана — это статический момент площади отсеченной части.

Условие прочности по касательным напряжениям:

2014-09-14 20-15-05 Скриншот экрана, Максимальное касательное напряжение равно отношению: в числителе произведение максимального значения поперечной силы на статический момент площади отсеченной части; в знаменателе произведение осевого момента инерции относительно нейтральной оси на ширину рассматриваемого сечения.

Источник

Деформация. Способы деформирования

Механическое воздействие на тело изменяет взаимное расположение его частиц. Деформация— изменение взаимного расположения точек тела, приводящее к изменению его формы и размеров.

При действии на тело внешней деформирующей силы расстояние между частицами меняется. Это приводит к возникновению внутренних сил, стремящихся вернуть атомы (ионы) в первоначальное положение. Мерой этих сил является механическое напряжение. Непосредственно напряжение не измеряется. В ряде случаев его можно вычислить через внешние силы, действующие на тело.

В зависимости от условий внешнего воздействия различают несколько способов деформирования, которые рассматриваются ниже.

Растяжение (сжатие)

К стержню (бруску) длиной l и площадью поперечного сечения S прикладывается сила F, направленная перпендикулярно сечению (рис. 11.1). В результате этого в теле возникает механическое напряжение о, которое в данном случае характеризуется отношением силы к площади поперечного сечения стержня (малое изменение площади поперечного сечения не учитывается):

В СИ механическое напряжение измеряется в паскалях (Па).

Рис. 11.1.Деформации растяжения и сжатия

Под действием приложенной силы длина стержня изменяется на некоторую величину ∆l, которая называется абсолютной деформацией. Величина абсолютной деформации зависит от первоначальной длины стержня, поэтому степень деформации выражают через отношение абсолютной деформации к первоначальной длине. Это отношение называется относительной деформацией (ε):

Относительная деформация — величина безразмерная. Иногда

ее выражают в процентах:

При небольшой величине относительной деформации связь между деформацией и механическим напряжением выражается законом Гука:

где Е — модуль Юнга, Па (модуль продольной упругости).

При упругой деформации напряжение прямо пропорционально величине деформации.

Модуль Юнга численно равен напряжению, увеличивающему длину образца в два раза (практически разрушение образцов наступает при значительно меньших напряжениях). В табл. 11.1 представлены значения модулей упругости некоторых материалов.

В большинстве случаев при растяжении или сжатии степень деформации в различных сечениях стержня различна. Это можно увидеть, если на поверхность тела нанести квадратную сетку. После деформирования сетка исказится. По характеру и величине этого искажения можно судить о распределении напряжения вдоль образца (рис. 11.2).

Таблица 11.1

Модуль упругости (модуль Юнга) некоторых материалов

Материал Модуль Юнга E, Па
Эластин 10 5 -10 6
Коллаген 10 7 -10 8
Мембрана эритроцита 4·10 7
Клетки гладких мышц 10 4
Мышца в покое 9·10 5
Кость 2·10 9
Сухожилие 1,6·10 8
Нерв 18,5-10 6
Вена 8,5·10 5
Артерия 5·10 4
Древесина 12·10 9
Резина 5·10 6
Сталь 2·10 11

Видно, что изменения формы ячеек сетки максимальны в средней части стержня и почти отсутствуют на его краях.

Сдвиг

Деформация сдвига возникает, если на тело действует касательная сила, приложенная параллельно закрепленному основанию (рис. 11.3). В этом случае направление смещения свободного основания параллельно приложенной силе и перпендикулярно боковой грани. В результате деформации сдвига прямоугольный параллелепипед превращается в косоугольный. При этом боковые грани смещаются на некоторый угол γ, называемый углом сдвига.

Рис. 11.2.Искажение квадратной сетки при растяжении стержня

Рис. 11.3. Деформация сдвига

Абсолютная деформация сдвига измеряется величиной смещения свободного основания (∆l). Относительная деформация сдвига определяется через тангенс угла сдвига tgγ, называемый относительным сдвигом. Так как угол у обычно мал, то можно считать

При сдвиге в образце возникает напряжение сдвига τ (касательное напряжение), которое равно отношению силы (F) к площади основания (S),параллельно которому действует сила:

При небольшой величине относительной деформации сдвига связь между деформацией и механическим напряжением выражается эмпирическим соотношением:

где G — модуль сдвига, Па.

Изгиб

Этот вид деформации характеризуется искривлением оси или срединной поверхности деформируемого объекта (балка, стержень) под действием внешних сил (рис. 11.4). При изгибе один наружный слой стержня сжимается, а другой наружный слой растягивается. Средний слой (называемый нейтральным) изменяет лишь свою форму, сохраняя длину. Степень деформирования бруска, имеющего две точки опоры, определяется по перемещению X, которое получает середина стержня. Величина А, называется стрелой прогиба.

Рис. 11.4. Деформации изгиба

Применительно к прямому брусу в зависимости от направления действующих сил изгиб называют продольным или поперечным. Продольный изгиб возникает под действием сил, направленных вдоль бруса и приложенных к его концам навстречу друг другу (рис. 11.5, а). Поперечный изгиб возникает под действием сил, направленных перпендикулярно, брусу и приложенных как к его концам, так и в средней части (рис. 11.5, б). Встречается также и смешанный продольно-поперечный изгиб (рис. 11.5, в).

Рис. 11.5.Различные виды изгиба: а) продольный, б) поперечный, в) продольно-поперечный

Кручение

Этот вид деформации характеризуется взаимным поворотом поперечных сечений стержня под влиянием моментов (пар сил), действующих в плоскости этих сечений. Кручение возникает, например, когда нижнее основание стержня закреплено, а верхнее основание поворачивают вокруг продольной оси, рис. 11.6.

При этом расстояние между различными слоями остается практически неизменным, но точки слоев, лежащих на одной вертикали, сдвинуты относительно друг друга. Этот сдвиг в разных местах будет различен. Например, в центре сдвига совсем не будет, по краям он будет максимальный. Таким образом, деформация кручения сводится к деформации сдвига, различному в разных частях, т. е. к неоднородному сдвигу.

Рис. 11.6. Деформации кручения

Рис. 11.6, а. Устранение асимметрии лица с помощью лейкопластыря

Абсолютная деформация при кручении характеризуется углом поворота (φ) одного основания относительно другого. Относительная деформация (θ) равна отношению угла φ к длине стержня:

Или:  Пример образец первого письма инвестору

Сравнивания различные способы деформирования однородных тел, можно увидеть, что все они сводятся к комбинации растяжения (сжатия) и сдвига.

Для устранения асимметрии лица после травмы проводится лейкопластырное натяжение со здоровой стороны на больную, рис. 11.6, а.

Лейкопластырное натяжение направлено против тяги мышц здоровой кожи и осуществляется прочной фиксацией другого свободного конца пластыря к специальному шлему — маске, изготовленному индивидуально.

Виды деформации

Зависимость механического напряжения от относительной деформации для твердых тел при растяжении представлена на рис. 11.7.

Рис. 11.7. Зависимость напряжения от деформации — диаграмма растяжения

Участок ОВ соответствует упругой деформации, которая исчезает сразу после снятия нагрузки.

Точка В — предел упругости σупр — напряжение, ниже которого деформация сохраняет упругий характер (т. е. справедлив закон Гука).

Участок ВМ соответствует пластической деформации, которая не исчезает после снятия нагрузки.

Участок MN соответствует деформации текучести, которая возрастает без увеличения напряжения. Напряжение, начиная с которого деформация становится текучей, называется пределом текучести.

Точка С — предел прочности σп — механическое напряжение, при котором происходит разрушение образца. Предел прочности зависит от способа деформирования и свойств материала.

В области упругих деформаций (линейная область) связь между механическим напряжением и деформацией описывается законом Гука (11.2).

Прочность

Прочность — способность тел выдерживать без разрушения приложенную к ним нагрузку.

Прочность обычно характеризуют величиной предельного напряжения, вызывающего разрушение тела при данном способе деформирования.

Предел прочности — это предельное напряжение, при котором образец разрушается.

При различных способах деформирования значения предела прочности отличаются.

Ниже (табл. 11.2) это показано на примере бедренной кости некоторых биологических объектов.

Источник



Деформация изгиба

Во многих механизмах применяют детали, поверхность которых имеет определённый изгиб. Такую форму получают в результате механической обработки или с помощью специального оборудования. Во втором случае деформация изгиба производится механическим воздействием на заготовку. Возникающие в этом случае физические процессы в различных слоях детали подробно описаны в материаловедении.

Все металлы в своём нормальном агрегатном состоянии имеют кристаллическую решётку. Они разделены на четыре основных типа:

  • базоцентрированная;
  • объёмно-центрированная;
  • гранецентрированная;
  • простая или примитивная.

При деформации происходит пространственное изменение физического тела. Это может быть изменение объёма или формы. Каждый из типов решётки реагирует по-своему. В каждом слое металла происходят специфические сдвиги атомов решётки, что приводит к изменению физических и механических характеристик всей детали. Допустимые нагрузки и натяжения рассчитывают на основании разработанных методик, которые приведены в специальной дисциплине. Она называется сопромат (сопротивление материалов).

На основании принятой классификации виды деформации твёрдых тел подразделяются на следующие категории:

  • изгиб;
  • сдвиг;
  • кручение;
  • растяжение (или обратный процесс – сжатие).

В подавляющем большинстве случаев наблюдается проявление нескольких видов деформации. Наиболее распространёнными считаются: растяжение или сжатие, сдвиг со смещением всех слоёв физического объекта. Деформация происходит под влиянием внешних факторов на отдельные участки физического объекта. В зависимости от направления воздействия деформация может быть продольной или поперечной. Её подразделяют на две категории: упругую (обратимую) и необратимую. В первом случае в силу своих физических свойств после изгиба объект принимает первоначальную форму. Иногда такую деформацию называют пластической. Во втором случае он приобретает другую форму, которая образовывается в результате такого действия.

Основные понятия

Под изгибом детали понимают естественное или искусственное изменение формы. Этот процесс разделяется на две категории – плоский или косой. В первом случае ось детали сохраняет своё первоначальное положение, во втором происходит её изменение в горизонтальной или вертикальной плоскости.

Основным теоретическим положением, определяющим физические процессы, протекающие в результате изгиба, является закон Гука. Согласно ему величина деформации (изгиба), пропорциональна приложенной к этому телу силе. Для каждого из видов деформации разработан индивидуальный расчёт действующих характеристик.

Оценка степени влияния действующих факторов на деформацию осуществляется с помощью следующих показателей:

  • площади поверхности подверженной деформации;
  • длины детали;
  • силы, воздействующие на конструкцию;
  • модуль упругости (его абсолютный показатель);
  • величина и характер изменения модуля длины в результате упругой деформации.

Одним из важных параметров считается потенциальная энергия деформации при изгибе. На основании этих параметров производят определение модуля Юнга. С его помощью рассчитывают скорость распространения продольной волны. Величина механического напряжения, при которой деформация тела всё ещё будет упругой, а сам объект способен восстановить первоначальную форму после снятия нагрузки, называется пределом упругости. При превышении допустимого значения этого параметра тело начнёт разрушаться. Этот предел называется прочностью. При оценке прочностных показателей применяют следующие предположения:

  1. О постоянстве нормальных напряжений. Она определяет постоянство расстояний при возникновении напряжений изгиба.
  2. Плоскости сечений. Оно называется гипотезой Бернулли. Сечения детали в спокойном положении находятся в плоском состоянии. После деформации они сохраняют первоначальную форму, но разворачиваются относительно некоторой линии. Она называется нейтральной осью.
  3. Отсутствие давлений на боковые поверхности. Считается, что соседние волокна не оказывают давления друг на друга.

Перечисленные гипотезы позволяют оценить деформации сдвига и характер изгиба каждого слоя исследуемой детали. Это происходит в результате воздействия различных сил. Нагрузки вызывают деформацию изгиба в различных плоскостях. Они подразделяются на две категории:

  • характеру воздействия (статические или динамические);
  • степени воздействия (массовые или объёмные);
  • поверхности (сосредоточенные, воздействуют на отдельные элементы поверхности и распределёнными – на всю поверхность).

К статическим относятся нагрузки, у которых место приложения и направления сил не меняется или изменяются медленно в течение определённого промежутка времени. К таким нагрузкам относится сила тяжести. В этом случае можно принять утверждение, что элементы физического объекта находятся в состоянии равновесия. У динамических нагрузок эти параметры меняются достаточно быстро или носят импульсивный характер. К ним относятся ударные нагрузки при забивании свай, обработке металла ковкой, воздействие неровностей дороги на колесо.

При сосредоточенной статической нагрузке на отдельный участок поверхности бруса происходит его деформация в сторону по направлению сил взаимодействия. Для расчёта параметров характеризующих основные показатели состояния деформированного тела применяют дифференциальные уравнения, которые позволяют выявить существующие функциональные связи. По деформации изгиба с помощью модуля Юнга можно вычислить прочность исследуемого элемента конструкции (балки, бруса, подвесной опоры и т. д.). На основании полученных областей решения можно построить графическое изображение силы упругости, которое наглядно показывает, что происходит с различными участками деформированной детали. Для каждой детали в зависимости от её геометрических размеров, материала изготовления и величины приложенных сил выведена своя формула.

Или:  Приложение Положение о филиале образовательной организации

Для наглядности восприятия характера протекающих процессов использует метод нанесения эпюр на поверхность объекта. Эта операция называется топология. Основной идеей является проецирование линий нагрузки на соответствующую плоскость (горизонтальную, фронтальную или профильную). В современных методах топологии применяют фрактальную геометрию.

Чистый и поперечный изгиб балки

Если единственным внешним воздействием является сила, вызывающая изгибающий момент, такой изгиб называется чистым. Собственным весом изделия можно пренебречь.

При изгибе балки вводят следующие допущения:

  • Во всех сечениях присутствуют только нормальные напряжения.
  • Их разбивают на два слоя. Один называются растянутым, другой сжатым. Границей этих зон является линия сечения. Величина нормальных напряжений нейтрального слоя равны нулю.
  • Продольный элемент детали подвержен осевому напряжению. Оно вызывает растяжение или сжатие. Соседние слои не вступают во взаимодействие друг с другом.
  • При сохранении геометрической формы верхнего слоя все внутренние слои сохраняют прежнюю форму. Воздействие внешней силы остаётся перпендикулярным к поверхности детали.

Если на поверхность детали производится воздействие под углом к поверхности — такой изгиб называется поперечным. При поперечном изгибе в слоях детали (например, балки) возникают два вида напряжений. Одни называются нормальными, другие касательными. В этом случае все сечения не будут плоскими, но искривлёнными. На определённых уровнях искривления при изгибе не достаточно большие. Это позволяет при расчёте применять все формулы, справедливые для чистого изгиба.

Изгибающий момент и поперечная сила

Для оценки параметров деформационных процессов, протекающих в различных конструкциях, применяют изгибающий момент и воздействующую поперечную силу. Их рассчитывают на основании уравнений равновесия. Каждое позволяет найти параметры каждого слоя балки при изгибе.

Величина момента, возникающего при изгибе, равняется сумме всех образованных моментов, расположенных в поперечном сечении. Поперечная сила рассчитывается суммированием проекций всех внешних сил. Оба параметра рассчитываются для составляющих, расположенных с одной стороны от этого сечения.

При проектировании конструкции для расчёта этих параметров учитывают следующие правилами:

  • воздействие внешнего фактора, способного повернуть балку по часовой стрелке относительно проведенного сечения;
  • создаётся изгибающий момент, способный привести к сжатию каждого из волокон балки (в уравнении его учитывают со знаком плюс);

Полученные результаты позволяют построить графическое изображение распределения сил и моментов на различных уровнях. Такие изображения называют эпюрами. С их помощью определяют прочность создаваемой конструкции.

Расчёты на прочность при изгибе

Особую важность при проектировании конструкций и их отдельных элементов играют предварительные расчёты на прочность при возникающих изгибах. По результатам проведенных расчётов устанавливают фактические (реальные) и допустимые напряжения, которые способны выдержать элементы и вся конструкция в целом. Это позволит определить реальный срок службы разработать рекомендации по правильной эксплуатации разработанного объекта.

Условие прочности выводится в результате сравнения двух показателей. Наибольшего напряжения, которое возникает в поперечном сечении при эксплуатации и допустимого напряжения для конкретного элемента. Прочность зависит от применённого материала, размера детали, способа обработки и его физико-механических и химических свойств.

Для решения поставленной задачи применяются методы и математический аппарат, разработанный в дисциплинах техническая механика, материаловедение и сопротивление материалов. В этом случае применяются:

  • дифференциальные зависимости Журавского (семейство дифференциальных уравнений связывающие основные параметры при деформации и их производные);
  • способы определения перемещения (наиболее эффективными считаются метод Мора и правило Верещагина);
  • семейство принятых гипотез;
  • разработанные правила построения графических изображений (построение эпюр).

Расчёт параметров производится в три этапа:

  • при проверочном расчёте (вычисляют величину максимального напряжения);
  • на этапе проектирования (производится выбор толщины и параметров сечения бруса);
  • во время вычисления допустимой нагрузки.

Полученные знаки величин напряжений определяются на основании оценки протекающих физических процессов и направления проекций векторов сил и моментов.

Наиболее наглядными результатами расчёта являются построенные эпюры на поверхности разрабатываемого изделия. Они отражают влияние всех силовых факторов на различные слои деталей. При чистом изгибе эпюры имеют следующие особенности:

  • на участке исследуемой балки с отсутствием нагрузки, которая носит распределённый характер, эпюра изображается прямой линией;
  • на участке приложения так называемых сосредоточенных сил на эпюре наблюдается изменение направления в форме скачка в том месте к которому приложен вектор силы;
  • в точке появления приложенного момента, скачок равен величине этого параметра;
  • на участке с распределённой нагрузкой интенсивность воздействия изменяется по линейному закону, а поперечные нагрузки носят степенной характер изменения (чаще всего по параболической кривой, с направлением выпуклости в сторону приложенной нагрузке);
  • в границах исследуемого участка функция изгибающего момента приобретает экстремум (на основании методов исследования функций с помощью дифференциального исчисления можно установить характер экстремума – максимум или минимум).

На практике решение систем дифференциальных уравнений может вызвать определённые трудности. Поэтому при расчётах допускаются некоторые прощения, которые не влияют на точность определяемых параметров. К этим упрощениям относятся:

  • расчёт производят с учётом нормальных напряжений;
  • в качестве основного предположения принимают гипотезу о плоских сечениях;
  • продольные волокна не производят дополнительного давления между собой (это позволяет считать, что процессы изгиба носят линейный характер);
  • деформация волокон не зависит от их ширины (значения нормальных напряжений постоянные по всей ширине);
  • для расчётной балки задают одну плоскость симметрии (все внешние силы лежат в этой плоскости);
  • физико-механические характеристики материала подчиняются закону Гука (модуль упругости имеет постоянную величину);
  • процессы в балке подчиняются законам плоского изгиба (это допущение вытекает из соотношений геометрических размеров изделия).

Современные методы исследования воздействия внешних сил, внутренних напряжений и моментов позволяют с высокой степенью точности рассчитать прочность каждой детали и всей конструкции в целом. Применение компьютерных методов расчёта, фрактальной геометрии и 3D графики позволяет получить подробную картину происходящих процессов.

Источник