8 октября, 2021 Автор: Соня Крапива

Что такое относительное остаточное удлинение образца

3.1 Методы определения механических свойств

Металлам присущи высокая пластичность, тепло- и электропро­водность. Они имеют характерный металлический блеск.

Свойствами металлов обладают около 80 элементов периодиче­ской системы Д.И. Менделеева. Для металлов, а также для метал­лических сплавов, особенно конструкционных, большое значение имеют механические свойства, основными из которых являются прочность, пластичность, твердость и ударная вязкость.

Под действием внешней нагрузки в твердом теле возникают на­пряжение и деформация. Напряжение это нагрузка (сила), отнесенная к первоначальной площади поперечного сече­ния образца.

Деформация – это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т.п. Де­формация может быть упругая (исчезает после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки). При все возрас­тающей нагрузке упругая деформация, как правило, переходит в пла­стическую, и далее образец разрушается.

В зависимости от способа приложения нагрузки методы испытания механических свойств ме­таллов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

Прочность – способность металлов оказывать сопротивление де­формации или разрушению статическим, динамическим или знако­переменным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках – усталостной прочностью.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение. Испытания проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения (рис. 3.1). По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат – значения напряжения, приложенного к образцу.

Из графика видно, что сколь бы ни было мало приложенное напряжение, оно вызывает деформацию, причем начальные деформации являются всегда упругими и величина их находится в прямой зависимости от напряжения. На кривой, приведенной на диаграмме (рис. 3.1), упругая деформация характеризуется линией ОА и ее продолжением.

Рис. 3.1. Кривая деформации

Выше точки А нарушается пропорциональность между напряжением и деформацией. Напряжение вызывает уже не только упругую, но и остаточную, пластическую деформацию. Величина ее равна горизонтальному отрезку от штриховой линии до сплошной кривой.

При упругом деформировании под действием внешней силы изменяется расстояние между атомами в кристаллической решетке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает.

Пластическое деформирование представляет собой совершенно другой, значительно более сложный процесс. При пластическом деформировании одна часть кристалла перемещается по отношению к другой. Если нагрузку снять, то перемещенная часть кристалла не возвратится на старое место; деформация сохранится. Эти сдвиги обнаруживаются при микроструктурном исследовании. Кроме того, пластическое деформирование сопровождается дроблением блоков мозаики внутри зерен, а при значительных степенях деформации наблюдается также заметное изменение форм зерен и их расположения в пространстве, причем между зернами (иногда и внутри зерен) возникают пустоты (поры).

Представленная зависимость ОАВ (см. рис. 3.1) между приложенным извне напряжением (σ) и вызванной им относительной деформацией (ε) характеризует механические свойства металлов.

· наклон прямой ОА показывает жесткость металла, или характеристику того, как нагрузка, приложенная извне, изменяет межатомные расстояния, что в первом приближении характеризует силы межатомного притяжения;

· тангенс угла наклона прямой ОА пропорционален модулю упругости (Е), который численно равен частному от деления напряжения на относительную упругую деформацию:

· напряжение, которое называется пределом пропорциональности (σпц), соответствует моменту появления пластической деформации. Чем точнее метод измерения деформации, тем ниже лежит точка А;

· в технических измерениях принята характеристика, именуемая пределом текучести (σ0,2). Это напряжение, вызывающее остаточную деформацию, равную 0,2 % от длины или другого размера образца, изделия;

· максимальное напряжение (σв) соответствует максимальному напряжению, достигнутому при растяжении, и называется временным сопротивлением или пределом прочности.

Еще одной характеристикой материала является величина пластической деформации, предшествующая разрушению и определяемая как относительное изменение длины (или поперечного сечения) – так называемое относительное удлинение (δ) или относительное сужение (ψ), они характеризуют пластичность металла. Площадь под кривой ОАВ пропорциональна работе, которую надо затратить, чтобы разрушить металл. Этот показатель, определяемый различными способами (главным образом путем удара по надрезанному образцу), характеризует вязкость металла.

При растяжении образца до разрушения фиксируются графически (рис. 3.2) зависимости между приложенным усилием и удлинением образца, в результате этого получают так называемые диаграммы деформации.

Рис. 3.2. Диаграмма «усилие (напряжение) – удлинение»

Деформация образца при нагружении сплава сначала является макроупругой, а затем постепенно и в разных зернах при неодинаковой нагрузке переходит в пластическую, происходящую путем сдвигов по дислокационному механизму. Накопление дислокаций в результате деформации ведет к упрочнению металла, но при значительной их плотности, особенно в отдельных участках, возникают очаги разрушения, приводящие, в конечном счете, к полному разрушению образца в целом.

Прочность при испытании на растяжение оценивают следующими характеристиками:

1) пределом прочности на разрыв;

2) пределом пропорциональности;

3) пределом текучести;

4) пределом упругости;

5) модулем упругости;

6) пределом текучести;

7) относительным удлинением;

8) относительным равномерным удлинением;

9) относительным сужением после разрыва.

Предел прочности на разрыв (предел прочности или временное сопротивление разрыву) σв, – это напряжение, отвечающее наибольшей нагрузке РВ предшествующей разрушению образца:

Эта характеристика является обязательной для металлов.

Предел пропорциональности (σпц) – это условное напряжение Рпц, при котором начинается отклонение от пропорциональной зависимости мости между деформацией и нагрузкой. Он равен:

Значения σпц измеряют в кгс/мм 2 или в МПа.

Предел текучести (σт) – это напряжение (Рт) при котором обра­зец деформируется (течет) без заметного увеличения нагрузки. Вычисляется по формуле:

Предел упругости (σ0,05) – напряжение, при котором остаточное удлинение достигает 0,05 % длины участка рабочей части образца, равного базе тензометра. Предел упругости σ0,05 вычисляют по формуле:

Модуль упругости (Е) отношение приращения напряжения к соответствующему приращению удлинения в пределах упругой деформации. Он равен:

где ∆Р – приращение нагрузки; l – начальная расчетная длина образца; lср – среднее приращение удлинения; F начальная площадь поперечного сечения.

Предел текучести (условный) – напряжение при котором остаточное удлинение достигает 0,2 % длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики.

Вычисляется по формуле:

Условный предел текучести определяют только при отсутствии на диаграмме растяжения площадки текучести.

Или:  Какие бывают очки для зрения материалы очковых линз покрытие и выбор очков для чтения

Относительное удлинение (после разрыва) – одна из характеристик пластичности материалов, равная отношению приращения расчетной длины образца после разрушения (lк) к начальной расчетной длине (l) в процентах:

Относительное равномерное удлинение р) – отношение приращения длины участков в рабочей части образца после разрыва к длине до испытания, выраженное в процентах.

Относительное сужение после разрыва (ψ), как и относительное удлинение – характеристика пластичности материала. Определяется как отношение разности F и минимальной (Fк) площади поперечного сечения образца после разрушения к начальной площади поперечного сечения (F), выраженное в процентах:

Упругость – свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упру­гость – свойство, обратное пластичности.

Очень часто для определения прочности пользуются простым, не разрушающим изделие (образец), упрощенным методом – измерением твердости.

Под твердостью материала понимается сопротивление проникновению в него постороннего тела, т.е., по сути дела, твердость тоже характеризует сопротивление деформации. Существует много методов определения твердости. Наиболее распространенным является метод Бринелля (рис. 3.3, а), когда в испытуемое тело под действием силы Р внедряется шарик диаметром D. Число твердости по Бринеллю (НВ) есть нагрузка (Р), деленная на площадь сферической поверхности отпечатка (диаметром d).

Рис. 3.3. Испытание на твердость:

а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

При измерении твердости методом Виккерса (рис. 3.3, б) вдавливается алмазная пирамида. Измерив диагональ отпечатка (d), судят о твердости (HV) материала.

При измерении твердости методом Роквелла (рис. 3.3, в) индентором служит алмазный конус (иногда маленький стальной шарик). Число твердости – это значение, обратное глубине вдавливания (h). Имеются три шкалы: А, В, С (табл. 3.1).

Методы Бринелля и Роквелла по шкале B применяют для мягких материалов, а метод Роквелла по шкале C – для твердых, а метод Роквелла по шкале A и метод Виккерса – для тонких слоев (листов). Описанные методы измерения твердости характеризуют среднюю твердость сплава. Для того чтобы определить твердость отдельных структурных составляющих сплава, надо резко локализовать деформацию, вдавливать алмазную пирамиду на определенное место, найденное на шлифе при увеличении в 100 – 400 раз под очень небольшой нагрузкой (от 1 до 100 гс) с последующим измерением под микроскопом диагонали отпечатка. Полученная характеристика (Н) называется микротвердостью, и характеризует твердость определенной структурной составляющей.

Источник

Что такое относительное остаточное удлинение образца

Продольная деформация образца при растяжении, как уже указывалось, определяется по формуле (3)

Деформация измеряется тензометрами или оптическим методом (рис. 4.8).

Рис. 4.7. Испытания на твердость по Роквеллу и по Бринелю

Поперечная деформация, коэффициент Пуассона.

Измерения показывают, что при растяжении происходит не только увеличение длины образца, но и уменьшение его поперечных размеров.

Деформация в поперечном направлении

где d — диаметр цилиндрической части образца после растяжения. Экспериментально установлено, что при упругих деформациях

где — коэффициент Пуассона (постоянная материала).

Для большинства конструктивных материалов . Объемная деформация при растяжении

где первоначальный объем материала Учитывая соотношения (11) — (13), найдем при упругих деформациях

Пренебрегая малыми членами, получим следующее значение объемной деформации при растяжении:

Из физических соображений очевидно, что при растяжении объем материала не должен уменьшаться, и потому

Для изотропного материала коэффициент Пуассона должен лежать в пределах — .

Отрицательная нижняя граница связана с энергетическими соображениями, рассмотрение которых опускаем.

Практически отсутствуют материалы, имеющие отрицательное значение коэффициента Пуассона, и потому следует считать

Замечание. В принципе отрицательные значения т. е. увеличение поперечных размеров при растяжении, могут иметь место, если процесс деформирования сопровождается обратимыми физико-химическими изменениями.

Рис. 4.8. Измерение деформаций с помощью тензометров или оптическим методом

Коэффициент Пуассона в упругопластической стадии.

Соотношение (12) справедливо и при появлении пластических деформаций, но при этом значение становится зависящим от величины деформации:

При возрастании деформации и появлении значительных пластических деформаций

Экспериментально установлено, что пластическая деформация протекает без изменения объема материала. Последнее обстоятельство становится физически понятным, если учесть, что деформация пластичности образуется за счет сдвига слоев материала.

Относительное удлинение при разрыве.

Важной характеристикой пластичности материала является остаточное (относительное) удлинение при разрыве. На рис. 4.9 показан образец до и после разрушения.

Для простого измерения удлинения на образец предварительно наносят две риски на расстоянии ; после деформации определяют расстояние между рисками складывая вместе две половинки образца;

остаточное удлинение принято измерять в процентах.

Так как после образования шейки удлинение материала происходит только в этом районе, то величина зависит от соотношения длины и диаметра образца. Для стандартных образцов применяют и соответственно обозначают удлинение при разрыве

Расположение сечения разрыва на образце в его цилиндрической части может быть случайным, связанным с некоторыми нарушениями однородности свойств материала по длине.

Рис. 4.9. Измерение удлинения образца и диаметра шейки при обрыве

Рис. 4.10. Диаграммы деформирования для пластичного (а) и хрупкого (б) материалов

Если обрыв произошел в сечении, близком к головке, то развитие пластической деформации в шейке было затруднено и значение получилось заниженным. В подобных случаях либо повторяют испытание, либо используют для оценки ту часть образца, а которой пластическая деформация не была стеснена.

Пластичные и хрупкие материалы при испытаниях на растяжение.

На рис. 4.10 показаны диаграммы деформирования для пластичных и хрупких материалов.

Материалы, обладающие к моменту разрушения значительной величиной , называются пластичными. Значения для некоторых конструкционных материалов приведены в табл. 1. Материалы, для которых остаточное удлинение меньше 3%, относят к хрупким материалам. Для элементов конструкций в подавляющем большинстве случаев необходимо применять достаточно пластичные материалы.

Пластичные материалы обладают способностью повышенного сопротивления в условиях концентрации напряжений, ударных к тепловых воздействий, при наличии трещин и поверхностных повреждений и т. п.

Материалы с высокими характеристиками прочности часто не могут использоваться в конструкциях, если они являются хрупкими. Малейший поверхностный дефект в виде риски, царапины приводит к значительной потере прочности (достаточно привести пример резки стекла). Часто хрупкие материалы очень сложны в производстве, так как не позволяют использовать сварку, клепку, рихтовку, правку, не выдерживают перенапряжения при монтаже и т. п.

Замечание. Не следует считать, что в современной технике невозможно применение малопластичных материалов. Широкое использование жаропрочных литых материалов для лопаток турбин опровергает такое мнение. При правильном проектировании (в первую очередь, если исключены концентраторы напряжений и работа на растяжение) могут оказаться работоспособными конструкционное материалы с удлинением при разрыве в пределах 0,5—3%.

Относительное сужение поперечного сечения при разрыве.

Второй важной характеристикой пластичности материала является сужение поперечного сечения образца при разрыве:

Или:  Отличие ломбарда от комиссионного магазина

где — первоначальная площадь поперечного сечения образца, FK — конечная площадь сечения в шейке образца после разрушения:

где — диаметр шейки образца.

Обычно величину которую называют поперечным сужением, измеряют в процентах.

Рис. 4.11. Деформация материалов в зоне шейки

Величина как характеристика пластичности имеет преимущество по сравнению с величиной — удлинением при разрыве, так как не зависит от геометрической формы цилиндрического образца (отношения ).

Естественно, что поперечное сужение связано с максимальной деформацией растяжения в шейке образца. Эту связь можно установить, принимая, что пластическая деформация протекает без изменения объема.

Рассмотрим слой материала образца толщиной (рис. 4.11), который в момент разрушения оказался в зоне шейки. Из условия постоянства объема находим

где — относительное удлинение материала образца в зоне шейки, — поперечное сужение, получим

Из последнего соотношения вытекает

Следует отметить, что существенно больше , так как выражает местную, а не среднюю деформацию на длине .

Источник

Механические свойства

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией.

Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими пли окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур.

Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени.

Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе материала для изготовления деталей машин необходимо прежде всего учитывать его механические свойства: прочность, упругость, пластичность, ударную вязкость, твердость и выносливость. Эти свойства определяют по результатам механических испытаний, при которых металлы подвергают воздействию внешних сил (нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (повторно-переменными). Нагрузка вызывает в твердом теле напряжение и деформацию.

Напряжение — величина нагрузки, отнесенная к единице площади поперечного сечения испытуемого образца. Деформация — изменение формы и размеров твердого тела под влиянием приложенных внешних сил. Различают деформации растяжения (сжатия), изгиба, кручения, среза. В действительности материал может подвергаться одному или нескольким видам деформации одновременно.

Для определения прочности, упругости и пластичности металлы в виде образцов круглой или плоской формы испытывают на статическое растяжение (ГОСТ 1497—73), Испытания, проводят на разрывных машинах. В результате испытаний получают диаграмму растяжения. По оси абсцисс этой диаграммы откладывают значения деформации, а по оси ординат — нагрузки, приложенные к образцу.

Прочность — способность материала сопротивляться разрушению под действием нагрузок оценивается пределом прочности ипределом текучести. Важным показателем прочности материала является также удельная прочность — отношение предела прочности материала к его плотности. Предел прочности sв (временное сопротивление) — это условное напряжение в Па (Н/м 2 ), соответствующеенаибольшей нагрузке, предшествующей разрушению образца: sв = = Рmax/Fо, где Рmaxнаибольшая нагрузка, Н; F — начальная площадь поперечногосечения рабочей части образца, м 2 . Истинное сопротивление разрыву Sк это напряжение,определяемое отношением нагрузки Рк в момент разрыва к площади минимального поперечного сечения образца после разрыва Fк,(Sк=Рк/Fк).

Предел текучести (физический) sт — это наименьшее напряжение (в МПа), при котором образец деформируется без заметного увеличения нагрузки: sт — Рт/Fт где Рт — нагрузка, при которой наблюдается площадка текучести, Н.

Площадку текучести имеют в основном только малоуглеродистая сталь и латуни. Другие сплавы площадки текучести не имеют. Для таких материалов определяют предел текучести (условный), при котором остаточное удлинение достигает 0,2% от расчетной длины образца: s0,2=Р0,2/Fо.

Упругость— способность материала восстанавливать первоначальную форму и размеры после прекращения действия нагрузки Руп оце­нивают пределом пропорциональности sпц и пределом упругости sуп.

Передел пропорциональности sпц — напряжение (МПа), выше которого нарушается пропорциональность между прилагаемым напря­жением и деформацией образца Рпц/Fо

Передел упругости (условный) s0,5 — это условное напряжение в МПа, соответствующее нагрузке, при которой остаточная деформация впервые достигает 0,05% от расчетной длины образца l: s0,5 = Р,5/Fо, где Р,5 — нагрузка предела упругости, Н.

Пластичность, т. е. способность материала принимать новую форму и размеры под действием внешних сил не разрушаясь, характери­зуется относительным удлинением и относительным сужением.

Относительное удлинение (после разрыва) δ — это отношение приращения (lк—l) расчетной длины образца после разрыва к его первоначальной расчетной длине 1о, выраженное в процентах: δ=[(lк-1)/1о]100%.

Относительное сужение (после разрыва) ψ — это отношение разности начальной и минимальной площадей (F Fк)поперечного сечения образца после разрыва к начальной площади F0 поперечного сечения, выраженное в процентах: ψ = [(Fо— Fк)/F] 100%.

Чем больше значения относительного удлинения и сужения для материала, тем он более пластичен. У хрупких материалов эти значения близки к нулю. Хрупкость конструкционного материала является отрицательным свойством.

Ударная вязкость, т. е. способность материала сопротивляться динамическим нагрузкам, определяется как отношение затраченной на излом образца работы W (в МДж) к площади его поперечного сечения F (в м2) в месте надреза КС = W/F.

Для испытания (ГОСТ 9454—78)изготовляют специальные стандартные образцы, имеющие форму квадратных брусочков с надрезом. Испытывают образец на маятниковых копрах. Свободно падающий маятник копра ударяет по образцу со стороны, противоположной надрезу. При этом фиксируется работа.

Определение ударной вязкости особенно важно для некоторых металлов, работающих при минусовых температурах и проявляющих склонность к хладноломкости. Чем ниже порог хладноломкости, т. е. температура, при которой вязкое разрушение материала переходит в хрупкое, и больше запас вязкости материала, тем больше ударная вязкость материала. Хладноломкость — снижение ударной вязкости при низких температурах.

Циклическая вязкость — это способность материалов поглощать энергию при повторно-переменных нагрузках. Материалы с высокой циклической вязкостью быстро гасят вибрации, которые часто являются причиной преждевременного разрушения. Например, чугун, имею­щий высокую циклическую вязкость, в некоторых случаях (для станин и других корпусных деталей) является более ценным материалом, чем углеродистая сталь.

Твердостью называют способность материала сопротивляться проникновению в него другого, более твердого тела. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, а также поверхностно-упрочненные детали. Твердость металла определяют способами Бринелля, Роквелла и Виккерса (рис. 10).

Или:  Расторжение срочного трудового договора по инициативе работника

Способ Бринелля (ГОСТ 9012—59)основан на том, что в плоскую поверхность металла вдавливают под постоянной нагрузкой стальной закаленный шарик. Диаметр шарика и величину нагрузки устанавливают в зависимости от твердости и толщины испытываемого металла. Твердость по Бринеллю определяют на твердомере ТШ (твердомер шариковый). Испытание проводят следующим образом. На поверхности образца, твердость которого нужно измерить, напильником или абразивным кругом зачищают площадку размером 3—5 см 2 . Образец ставят па столик прибора и поднимают до соприкосновения со стальным шариком, который укреплен в шпинделе прибора. Груз опускается и вдавливает шарик в испытываемый образец. На поверхности металла образуется отпечаток. Чем больше отпечаток, тем металл мягче.

За меру твердости НВ принимают отношение нагрузки к площади поверхности отпечатка диаметром d и глубиной t,который образуется при вдавливании силой Р шарика диаметра D.

Числовое значение твердости определяют так: измеряют диаметр отпечатка с помощью оптической лупы (с делениями) и по полученному значению находят в таблице, приложенной к ГОСТу, соответствующее число твердости.

Преимущество способа Бринелля заключается в простоте испытания и точности получаемых результатов. Способом Бринелля не рекомендуется измерять твердость материалов с НВ>450, например закаленной стали, так как при измерении шарик деформируется и показания искажаются.

Для испытания твердых материалов применяют способ Роквелла (ГОСТ 9013—59). В образец вдавливают алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1′,59 мм. Твердость по Роквеллу измеряется в условных единицах. Условная ве­личина единицы твердости соответствует осевому перемещению наконечника на 0,002 мм. Испытание проводят на приборе ТК. Значение твердости определяется по глубине отпечатка h и отсчитывают по циферблату индикатора, установленному на приборе. Во всех случаях предварительная нагрузка Р равна 100 Н.

При испытании металлов с высокой твердостью применяют алмазный конус и общую нагрузку Р= Р1 = 1500 Н. Твердость отсчитыва­ют по шкале «С» и обозначают НRС.

Если при испытании берется стальной шарик иобщая нагрузка 1000 Н, то твердость отсчитывается по шкале «В» и обозначается HRB.

При испытании очень твердых или тонких изделий используют алмазный конус и общую нагрузку 600 Н Твердость отсчитывается по шкале «А» и обозначается НRА. Пример обозначения твердости по Роквеллу: НRС 50 — твердость 50 по шкале «С».

При определении твердости способом Виккерса (ГОСТ 2999—75) в качестве вдавливаемого в материал наконечника используют четы­рехгранную алмазную пирамиду с углом при вершине 136°. При испытаниях применяют нагрузки от 50 до 1000 Н (меньшие значения на­грузки для определения твердости тонких изделий и твердых, упрочненных поверхностных слоев металла). Числовое значение твердости определяют так: замеряют длины обеих диагоналей отпечатка после снятия нагрузки и с помощью микроскопа и по полученному среднему арифметическому значению длины диагонали находят в таблице соответствующее число твердости. Пример обозначения твердости по Виккерсу — НV 500.

Для оценки твердости металлов в малых объемах, например, на зернах металла или его структурных составляющих применяют способ определения микротвердости. Наконечник (индентор) прибора представляет собой алмазную четырехгранную пирамиду (с углом при вер­шине 136°, таким же, как и у пирамиды при испытании по Виккерсу). Нагрузка на индентор невелика и составляет 0,05—5 Н, а размер отпечатка 5—30 мкм. Испытание проводят на оптическом микроскопе ПМТ-З, снабженном механизмом нагружения. Микротвердость оценивают по величине диагонали отпечатка.

Усталостью называют процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, приводящий к образованию трещин и разрушению. Усталость металла обусловлена концентрацией напряжений в отдельных его объемах, в ко­торых имеются неметаллические включения, газовые пузыри, различные местные дефекты и т. д. Характерным является усталостный излом, образующийся после разрушения образца в результате многократного нагружения и состоящий из двух разных по внешнему виду частей. Одна часть I излома с ровной (затертой), поверхностью образуется вследствие-трения поверхностей в области трещин, возникших от действия повторно-переменных нагрузок, другая

Источник



Большая Энциклопедия Нефти и Газа

Для определения эластичности резину подвергают растяжению и определяют ее относительное и остаточное удлинение . Отношение конечной длины испытуемого образца ( до момента его разрыва) к первоначальной длине показывает величину относительного удлинения образца резины.  [16]

Для оценки качества невулканизованных каландровых резин определяют прочность, относительное и остаточное удлинение резины при разрыве, твердость, толщину листа. Качество клея оценивают по внешнему виду, концентрации и вязкости. Готовое покрытие подвергают визуальному осмотру, простукиванию и испытанию на электропробой.  [18]

При испытании на растяжение определяют также характеристики пластичности материала: относительное остаточное удлинение и относительное сужение ( уменьшение площади поперечного сечения) при разрыве.  [20]

С, 5Ш — полное, равномерное и при образовании шейки относительное остаточное удлинение соответственно; /, Х / с и / ш — полное, равномерное и при образовании шейки относительное остаточное поперечное сужение соответственно.  [22]

Химическая стойкость резин характеризуется изменением физико-механических свойств ( прочности при растяжении, относительного и остаточного удлинения ) и набуханием в процессе воздействия агрессивной среды.  [24]

Пластичность картона в % определяется ( ГОСТ 9955 — 62) величиной относительного остаточного удлинения картона при растяжении образца в воздушно-сухом состоянии при заданной нагрузке.  [26]

Настоящий стандарт устанавливает метод определения предела прочности и относительного удлинения при разрыве, относительного остаточного удлинения после разрыва и условных напряжений при заданных удлинениях, заключающийся в растяжении образцов с постоянной скоростью при заданной температуре до разрыва.  [27]

Изготовитель указывает в сертификате прочность резиновых уплотнителей при растяжении, сопротивление разрушению, относительное и остаточное удлинения устойчивость в маслобензи-новой среде и твердость резины. Кроме того, в ТУ указывается напряжение сжатия и растяжения при различных нагрузках. Проводятся новые разработки для повышения устойчивости сферических пакеров. Для плашечных и универсальных пре-венторов предусматривают материалы из следующих эластомеров: нитрила, неопрена, натурального каучука и материала ЕСО. В табл. 11.78 приведены физико-механические свойства эластомеров, представляемых фирмой Н. Л. Шеффер для изготовления уплотнителей и пакеров.  [28]

Полужесткие пластмассы — твердые, упругие, кристаллические материалы со средним модулем упругости, высоким относительным и остаточным удлинением при разрыве; остаточное удлинение обратимо, полностью исчезает при температуре плавления кристаллитов.  [29]

Протектор шин подвергают испытанию на прочность, при этом определяется предел прочности при растяжении, относительное и остаточное удлинение , сопротивление истиранию и твердость, а также прочность связи при расслаивании между деталями покрышки: протектором и брекером, брекером и каркасом, боковиной и каркасом и между слоями каркаса.  [30]

Источник